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The effect of a geostrophic boundary current on internal gravity waves is studied 
with a reduced-gravity model. We found that the boundary current not only modifies 
the coastal Kelvin wave, but also forms wave guides for short internal gravity waves. 
The combined effects of current shear, the boundary, and the slope of the interface 
create the trapping mechanism. These trapped internal gravity waves appear as 
groups of discrete zonal modes. They have wavelengths comparable to or shorter 
than the internal Rossby radius of deformation. Their phase speeds are close to that 
of the internal Kelvin wave. However, they can propagate both in, or opposite to, the 
direction of the Kelvin wave. The results of the present work suggest the possibility 
of finding an energetic internal gravity wave phenomenon with near-inertial 
frequency in a broad geostrophic boundary current. 

1. Introduction 
Theoretical studies of water wave and current interaction started half a century 

ago when Unna (1942) studied the effect of tidal streams on waves, although 
observations of this physical phenomenon might have been made for centuries. 
Johnson (1947) also discussed the refraction mechanism caused by wave-current 
interaction, and suggested that the major ocean currents might have an important 
impact on the characteristics of waves, i.e. wave height, wavelength, and the 
directions in which they approach the shore. Longuet-Higgins & Stewart (1960, 
1961) found that a short wave underwent changes in its amplitude and wavelength 
when it interacted with non-uniform currents or long waves. Kenyon (1971) used the 
geometrical optics approximation to study the refraction of surface gravity waves in 
ocean currents, and applied his theory to analysing the trapping and reflection of 
gravity waves in the Gulf Stream and the Circumpolar Current. Peregrine & Smith 
(1975) developed asymptotic solutions for stationary gravity waves in jet-like 
streams. Their treatment of trapped surface waves was an extension of the work of 
Smith (1970). In  their problem, the waves were ‘doubly’ trapped at both the surface 
and the centre of the jet. Kunze (1985) used the ray tracing approach to show the 
behaviour of near-inertial waves in a model geostrophic jet. He found that trapping 
occurred in regions of negative vorticity. Comprehensive reviews of gravity waves 
and current interaction are given by Peregrine (1976)) and more recently by Jonsson 
(1989). 

So far, most studies on water wave and current interaction problems can be 
applied only to the interior of the ocean (lake) because they do not consider the effect 
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of the horizontal boundaries of the basin. The lack of study on wave interaction with 
coastal currents is partly due to the mathematical difficulties involved, e.g. 
considering continuous stratification and horizontal-boundary conditions at the 
same time usually results in non-separable equations, and is also probably partly due 
to  the fact that the relative importance of mean currents in coastal region is not fully 
understood. Grimshaw (1983) studied the effect of a depth-dependent mean current, 
which has no horizontal shear, on Kelvin waves in a stratified ocean. He found that 
the Kelvin wave in a vertically sheared mean current contained all vertical modes. 
Later, Grimshaw & Yi (1990) studied the coastal current effect on long waves, and 
their results provided fully nonlinear wave-like solutions. They pointed out, 
however, that the long-wave restriction of their results precluded their theory from 
being applicable directly to observations because the alongshore scale and offshore 
scale were comparable in observed meanders. 

In the present work, we used a 1; layer reduced-gravity model to study trapped 
internal gravity waves in a geostrophically balanced, steady boundary current, 
which exists only in the upper layer and flows parallel with the straight coastline (Ma 
1991). 

A t  low frequencies (compared with the inertial frequency), the only kind of 
trapped waves allowed by the present model are the internal Kelvin waves. In 8 3, we 
derive estimates of the effect of the current on the speed and offshore shape of the 
internal Kelvin wave of a given longshore wavenumber. 

At  high frequencies, trapped internal gravity waves propagating alongshore are 
possible, as members of a group of discrete offshore modes (the mode number equals 
the number of zero-crossings in the offshore direction). In some cases, high-frequency 
internal gravity waves can be trapped in a mid-ocean wave guide, which is formed 
by two interior turning points in the offshore direction. The location of the wave 
guide depends on the structures of the mean current and the associated interface 
slope. In  $4, asymptotic formulae for the wave dispersion relationship, modal shapes, 
and locations of the wave guide are derived for the high-frequency end of the 
spectrum. 

Although asymptotic formulae are obtained for both the low and high ends of the 
spectrum, we also solved the problem numerically. Numerical solutions here serve 
not only as substitutes when asymptotic solutions are difficult to obtain or the 
asymptotic condition is not met, but also as tests of the correctness of the asymptotic 
methods. The numerical technique used in this paper is the Chebyshev spectral 
method, which was extended by Boyd (1989) to solve infinite and semi-infinite 
domain problems. 

2. Model assumptions and non-dimensionalization 
The present model has the following features: 
(i) a half-planar ocean (infinite in the meridional direction, and semi-infinite in the 

zonal direction) in the northern hemisphere, on which a coordinate system is set in 
such a way that its x- and y-axes point to the east and north respectively. The eastern 
boundary is located at  x = 0 (the choice of the north-south orientation of the coastal 
line is for convenience, which does not affect the generality of the present study) ; 

(ii) two layers of homogeneous fluid, the top layer is of depth H which is always 
positive (no outcropping), and the deep lower layer is motionless and has a slightly 
higher density ; 

(iii) the fluid is inviscid and incompressible; 
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(iv) the hydrostatic approximation and f-plane assumption are adopted ; 
(v) in the steady state, there is a geostrophic meridional current which is confined 

Under these assumptions, the shallow-water equations become 
within the top layer and has only zonal shear. 

-++-+(v+'u)----fw au au au = -g'-) a7 
at ax aY ax 

av 
+(v+D)-+fu = 

av a ( v + q  

at ax aY 
- - + u p  

a7 a a 
- + - {u[q + E+ H,]} + - { (v + u) [y + E +H, ] )  = 0, 
at ax aY 

(2 .2)  

where g' is the reduced gravity; f is the Coriolis parameter; u and w are the offshore 
and alongshore velocities in the top layer: respectively, which are caused by the wave 
motion; U(z) is the mean current velocity, which is in geostrophic balance, i.e. 
f i ( x )  = g'd%(x)/dx; h(x) is the variation of the interface depth due to  the geostrophic 
mean current; @x) +H,, = H ( x )  is the mean thickness of  the layer, and H ,  is its value 
a t  the eastern boundary, which is chosen for convenience; and y(x,y,t) is the 
interface displacement from the mean. 

Now we define the non-dimensionalized variables as 

(@, u, w) = (g'H,)f (u*, ?I*, v * )  = C(@, u*, v* ) ,  

(K, 7) = g o @ * ,  7*), 

(& Y) = " 9 ' ~ , ) " f l ( ~ * ,  Y") = L,(x*, Y*)> 
t = t * / f=  Tt*. 

Therefore, the non-dimensionalization scales C, L,  and 1/T are the internal Kelvin 
wave speed, the internal Rossby radius of deformation, and the inertial frequency, 
respectively. If we take f = 3 x lo-* s-l, (pz -p l ) / pz  = 0,005 (where p1 and pz are 
the densities of the top layer and the lower layer, respectively) and H ,  = 50 m, then 
C = 2.7 m s-l and L,  = 27 km. 

Substituting the above expressions into (2.1)-(2.3) and omitting the asterisks for 
simplicity, we obtain the non-dimensionalized shallow-water equations 

au au au a7 -+u-+(v+fl)--w = --, 
at ax aY ax 

av a(v+F) av a7 - + u p  +(w+V)-+u = --] 
at ax aY 

a a 2+- [u(y +E+ i)] [(v+u) (7 +E+ 1)l = 0. 
at ax 

(2.5) 

3. Mean current effect on the coastal Kelvin wave 
3.1.  Perturbation equatims 

We used the perturbation method to study t3he shear mwn current effect on the 
coastal Kelvin wave. If we assume that the wave field is of sinusoidal wave form in 
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the y (meridional) direction, then the wave and the mean current can be expressed 
as u = i{eul(x) +Qu,(x) + . . . ) ~ ( k ,  w )  ei(ky-ot), 

V+ ‘u = Bv,(x) +{evl(x) + Qu,(x) + . . . ) A  ( k ,  w )  ei(kg-wt) ,  

E+q = .&t,(x) + {eq l (z )  +Jq2(x) + . . . ) ~ ( k ,  w )  ei(”Y-wt), 

(3.1) 
(3.2) 
(3-3) 

w = w,+€41J1+ ..., (3.4) 
where t‘ is a small perturbation parameter, A ( k , w )  is the amplitude of the Kelvin 
wave, and w and k are the wave frequency and the y-direction wavenumber, 
respectively. 

Substituting the above expressions into (2.4)-(2.6) yields the first- and second- 
order linearized equation systems. 

First order : -iw,u,-v, = -ri, (3.5) 
-iw,v,+u, = -ikrl, (3.6) 

-iiw,q,+u~+ikv, = 0. (3-7) 

(3.8) 

(3.9) 

Second order : - io, uz - v2 = -7; - ikv, u1 +iwl ul, 

- iw, vz + u2 = -ikq, - ikv, v, + iw, w,, 
- iw, q2 + u; + ikv, = - ikv, r1 -ikhv, + iw, 7, - u1 h’-ui h, (3.10) 

where a prime denotes the differential operator d/&. 
Both the first- and second-order solutions are subjected to the no-normal-velocity 

boundary condition at x = 0, and the solutions and their derivatives vanish when 

u1 = 0 at x = 0,  (3.11) x-+--co, i.e. 

ug = 0 at x = 0, (3.12) 
(ul, vl, n), (u;,v;,q’l) + 0 when x --t - a, (3.13) 
(u2, v 2 ,  qz), ( u L 4 , ~ ; )  -+ 0 when x --f - 00. (3.14) 

The present perturbation analysis is valid only for long, low-frequency waves. 

3.2. Eigenvalue and eigenfunction solutions 
It is easy to verify that the first-order solution is the linear coastal Kelvin wave 

u1 = 0, (3.15) 
v1 = ex, (3.16) 
rl = ex, (3.17) 
0, = k .  (3.18) 

The actual amplitude of the Kelvin wave, A(lc ,w) ,  is already included in (3.1)-(3.3). 
The second-order perturbation equations then can be derived as 

(3.19) 

(3.20) 

rl-r2 = - 2 k 2 ( ~ ~ - v O ) e “ - ( ~ - k z ) h e 5 + v ~ ( ~ )  e5- (1  -k2)heZ, 

V Z P )  - r;m -c;  + v,(O) = 0, (3.22) 
q Z , ~ i - t 0  when x-t-00, (3.23) 

(3.21) 
with the corresponding boundary conditions 

where ci  = wl/k. 
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Through a change of variable, (3.21)-(3.23) become 

z;-2, = $(x), 
Z,(x) = Zk(x) when x = 0, 

Z,(x) = wo(0)-ck when x - f -  a, 
Z;1(x) = 0 when x+--oc), 

(3 .24)  

(3.25) 

(3 .26)  

(3.27) 

where z, = T a  + wo(0) - c;, (3.28) 

$(x) = - wo(0) + ci-21c2(ci- wo) eX+ w;)e”- (1 - k 2 )  he“. (3.29) 

To satisfy the solvability condition so that Z,(x) has a non-trivial solution, $(x) has 
to be orthogonal with the solution of the homogeneous equation, i.e. 

(3 .30)  

This yields the eigenvalue formula 

c1 P = F(O), (3.31) 

where (3 .32)  

Therefore, the effect of the horizontally sheared geostrophic mean current on the 
phase speed of the coastal Kelvin wave is a generalized Doppler shift, which is the 
weighted integration of the mean current velocity and the interface slope. Hence, the 
coastal Kelvin wave remains non-dispersive to the first order of the perturbation 
correction. A similar conclusion was reached by Grimshaw (1983) with a vertically 
sheared mean current. 

The Green’s function solution for 2, (see the Appendix) is 

where 

(3 .33)  

(3.34) 

Transforming 2, back to the original variable, T,, and using (3 .32)  gives 

In this derivation, we have eliminated terms proportional to  ex, which are 
complementary solutions of (3.24).  We also have eliminated any arhitrary constants 
created in the procedure of seeking perturbation solutions. 

The eigenfunotions for uz(z) and vz (x )  can be obtained by substituting tho 
expression for q,(x) into (3.19) and (3.20) : 

uz(x)  = -kle-zF(x)-eXF(0)], (3.36) 

v,(x) = ~2(x)-ee-xF(r)+e~wo(x). (3.37) 

The above results show that in the presence of the mean current, the offshore 
velocity of a coastal Kelvin wave is no longer zero. However, it is still much smaller 
than the alongshore velocity, and its magnitude increases as the wave becomes 
shorter. 
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FIGURE 1. Zonal profiles of the second-order eigenfunctions, which are the corrections to the first- 
order coastal Kelvin wave due to a constant mean current vo = -0.0185. This non-dimensional 
current velocity is equivalent to a dimensional value of -0.05 m s-l if the dimensional long-wave 
phase speed is assumed to be 2.7 m s?. Eigenfunctions are scaled such that v,(O) = 1. The 
meridional wavenumber k = 0.27 and the eigenvalue phase speed cp = 0.98. ----, u,; -, v,; 
...... , 72. 

In  case of no zonal shear in the mean current, the solutions are simplified to 

~ ~ ( x )  = +uoxe”[l-(1-k2)x], (3.38) 

’U2(2) = -+Uokxe”, (3.39) 

wuz(x) = +woez[l-x+(k2-l)x2], (3.40) 

c1 P = $71,. (3.41) 

Again, we have eliminated the terms which are proportional to ex in the expression 

Equation (3.41) is a little unexpected because the Doppler-shifted phase speed is 
c +so instead of c + w,. Actually, the results are valid only for long Kelvin waves. As 
we will discuss later, the short Kelvin waves in a constant mean current, wo, do have 
a Doppler-shifted phase speed of c + wo. 

Figure 1 displays the second-order eigenfunctions, which are the corrections to the 
Kelvin wave due to a constant mean current. They cause the Kelvin wave to  be less 
confined to coastal areas. We checked the correctness of the analytical solution by 
directly solving the eigenvalue problem ((3.8)-(3.10), (3.12) and (3.14)) numerically. 
The solutions from these two methods agree so well that we cannot see any difference 
in the plots. 

As the Kelvin wave becomes shorter, it will be more severely modified by second- 
order perturbation solutions until the maximum interface displacement no longer 
occurs a t  the eastern boundary, which is a feature of the so-called turning longitude 
problem. The perturbation scheme used in this section then breaks down because, for 
short waves, neglect of the wave-current interaction terms a t  the lowest level is no 
longer legitimate. 

for T z .  
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4. Short internal gravity waves trapped by geostrophic boundary current 
We studied the effect on the internal Kelvin wave of a mean shear current which 

is assumed to have large alongshore scale ( % LR)  and low frequency ( Q f), such that 
the linear theory is valid to the lowest order. However, as pointed out by Garrett & 
Munk (1975), measurements of low-frequency oceanic fluctuations are often obscured 
by high-frequency internal waves which are very energetic and have vertical and 
horizontal displacements of typically 10 m and 1 km. Pinkel (1983) observed that in 
the upper-ocean internal wave field off the coast of California the horizontal 
wavelength was O( 10 km). Energetic small-scale waves in the upper pycnocline also 
were found by Webster (1968), and Kunze & Sanford (1984, 1986). Moreover, 
observations of the offshore structure and the alongshore-propagating pattern of the 
fluctuations in the eastern boundary currents suggest other interesting aspects which 
cannot be fully explained by the existing linear theory. According to Huyer (1990)) 
the strongest fluctuations are not always found over the inner shelf, as is the 
situation over the Oregon shelf; sometimes the strongest fluctuations are over the 
midshelf, as occurs off both Peru and the southeastern Australian coasts. Even 
though the current fluctuation along the northwestern coast of the United States 
usually propagates northward, southward propagation is also observed. Huyer also 
pointed out that the coastal-trapped wave theory, which is basically linear, accounts 
reasonably well for large-scale, alongshore fluctuations, but it fails to explain the 
small-scale alongshore variations. These observations indicate that a nonlinear study 
of the trapped internal gravity waves in the boundary current is necessary. A first 
step in doing so is to  include the wave-current interaction terms, which is the 
approach of the work in this section. 

4.1. Governing equations 
In addition to the assumptions made in $2, here we further assume that the mean 
current velocity is stronger than that caused by wave motion but weaker than the 
wave phase speed. As a result, the so-called critical layer (critical longitude in the 
present problem), where the mean current velocity equals the wave phase speed, will 
not be encountered. 

We express the wave and mean current fields in the following form: 

where the variables and parameters have the same meaning as before. In these 
perturbation expressions, the waves are assumed to be weaker than the mean 
current. Therefore, when the mean current diminishes, as will the wave field. 

Then, (2.4)-(2.6) can be linearized as 

[o-kwo(x) ]  u- v = -2, 
- [o- kw,(x)] v+ [I + v;(x)] u = - kZ,  

- [o- kw,(x)] 2 + [ 1 + h(x)] u' + wo(z) u+ k[l + h(z) ]  v = 0, 

(4.4) 

(4.5) 

(4.6) 
where we have used the geostrophic relationships wo(x) = h'(z). 

The boundary conditions to be imposed are 

U = O  at x = O ,  (4.7) 

U , V , Z + O  as x+-co. (4.8) 
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Since the large-scale low-frequency waves are dominated by linear dynamics, we 
expect that, to the lowest order, the long waves in the present model are the internal 
Kelvin waves. This observation was confirmed by later numerical analysis in which 
we have found that all the long-wave eigenmodes are consistent with the analytical 
results given in $ 2 .  

In this section, we use the asymptotic method to study coastal-trapped internal 
gravity waves whose wavelengths are shorter than the internal Rossby radius of 
deformation. Since the phase speeds of these waves are close to 1 (the internal Kelvin 
wave speed), as shown later, this is equivalent to saying that the wave frequencies 
are higher than the inertial frequency. So, when we discuss short waves later, we also 
mean waves of high frequency. 

The behaviour of short waves is dominated by the following equations: 

u = - Z ’ / { k [ c ,  - VO(X)l), (4.9) 
v = z/[~p-%(41, (4.10) 

z”-Ic2{1 -[Cp-V0(X)]2/[1 +h(x)])Z = 0, (4.11) 

with the boundary conditions in (4.7) and (4.8). 
In  deriving the above equations, we considered that the waves are of the quality 

of a boundary-layer phenomenon. The magnitude of 2‘ increases with k while that 
of 2 does not (as shown in later asymptotic expressions for 2). We have neglected 
terms which are not important at large E .  From the physical point of view, the 
simplification which led to (4.9)-(4.11) is consistent with the general belief that short 
waves have little to do with the Coriolis force. However, the Coriolis force in the 
present model affects the wave field indirectly through the lower-order current field, 
which is in geostrophic balance. 

4.2. A single-turning-longitude case 

The WKBJ solution for (4.11) is 

C, cos [ IC J( -q)i] dx + C, sin [ IC r( - q)i] dx 
z z  (q  < 01, (4.12) 

( - a ) +  

where q = 1 - [ C , - w o ( X ) ] 2 / [ 1 + h ( X ) ] .  (4.14) 

Here, we assumed that q does not change sign in the vertical ( -  O O , ~ ] ,  nor does it 
have zeros. Thus, there is no non-trivial solution which satisfies the evanescent 
condition a t  infinity if q < 0. The unique solution for q > 0 is 

C, exp (- k [qi(r) dr) 
z =  

4(4f 

Hence, for large k U =  c 4 “  f x  e n p ( - k r + d r ) .  
cp - WO(4 

Equations (4.7) and (4.16) lead to the dispersion relation 

q(0) = 0. 

(4.15) 

(4.16) 

(4.17) 
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This result contradicts our assumption that q(x) does not vanish in the entire 
domain ( -  00, 01. Therefore, the trapped short internal gravity waves in the mean 
current must have a t  least one turning longitude. I n  the following, we study trapped 
internal gravity waves with a single turning longitude. 

4.2.1. Eigenfunction solutions 
If (4.11) has the so-called turning longitudes, where q vanishes because of the 

existence of the geostrophic mean boundary current in the top layer, the WKBJ 
solution ceases to be valid nearby these points. 

Assume that xo < 0 is a simple zero of q ( x ) ,  and that x-xo has the same sign as q(x) .  
Then, the eigenfunctions of (4.11) are 

2, M [q(x)/LJ-;Ai [rC&!J, (4.18) 
2, M [q(x)/Q-;Bi [d[], (4.19) 

where I :[: = p qi(t) dt (x xo), 
XU 

X 

5 0  

$(-[); = I [-q(t)]idt (x d x,,). 
(4.20) 

Ai, Bi are the first- and second-kind Airy functions (Olver 1974). 
Because xo is a simple zero of q(x), then q’(xo) + 0. For large negative values of k:< 

Z ,  x [-q(x)]-i~bsin [$~C(-Q~+;TC~], (4.21) 
2, z [-q(x)]-~k-fcos[gk(  -@++?TI. (4.22) 

Hence, 2, and 2, are identical to the WKBJ solution (4.12) when x+- 00 and q(x)  
< 0. They do not satisfy the vanishing boundary condition at infinity. 

The only possibility for 2 having a non-trivial solution is when q(x)  and x - xo have 
opposite signs. Then the expressions of the eigenfunctions of Z are identical to (4.18) 
and (4.19) but with the following definition of 5 :  

$(-[)$ = [-q(t)lidt (x > xo), 
$0 

(4.23) 

g[: = r q : ( t )  dt (x < xo). 

Z ,  M g-+(x) IC-2 exp ( - $k@),  (4.25) 
Z, % &(x) k-i exp ($k[g). (4.26) 

2, vanishes at infinity but Z, blows up when X+-CO.  Thus, 2, should be 
eliminated from the eigenfunctions of the present problem. 2, exhibits oscillatory 
behaviour when x > xo, and decays exponentially when x < xo. In other words, 2, 
changes its behaviour through the turning longitude xo because of the characteristics 
of the Airy function Ai (y) on both sides of y = 0. 

4.2.2. Eigenvalue calculation 

solutions. Under this condition 

(4.24) 
X 

From the behaviour of the Airy functions we know that when x + - co 

We have shown that q(z) must be of opposite sign to x-xo to have non-trivial 

z x -4(x)14 sin ($k( - c)$++z~, (4.27) 

z’ k;[ -q(x)$ cos [$k( - {)$+$TI + O(k-{ ) ,  (4.28) 
when x +- 0 and I&+ - 00. 
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Mode number 
(zonal) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Eigen-wavenumber 

numerical method 

16.256 
28.006 
39.983 
52.043 
64.140 
76.271 
88.462 

100.403 
112.461 
124.942 

asymptotic method 

17.253 
28.620 
40.418 
52.353 
64.422 
76.491 
88.614 

100.710 
112.833 
124.956 

TABLE 1. Meridional (alongshore) wavenumbers of the ten lowest zonal modes with cp = 1.0, which 
are trapped by a constant mean current w,, = -0.0185. This non-dimensional current velocity is 
equivalent to a dimensional value of -0.05 m 8, if the dimensional long-wave phase speed is 
assumed to be 2.7 m s-l. The eigenvalues (wavenumbers) itre calculated numerically and by the 
asymptotic method. 

Equations (4.7) and (4.9) and (4.28) yield the asymptotic equation for large lc: 

c o s [ k ~ o ( - q ) ~ d x + $ n  1 = 0. (4.29) 

For a given value of the wavenumber, I%,  there are infinite number of c p  values 
satisfying (4.29). However, only a finite number of them belong to trapped waves 
because when c p  becomes too large, the turning longitude, xo, even if it  exists, will 
exceed the offshore range of a coastal-trapped phenomenon. Moreover, for a given 
boundary current with fixed width, there is a maximum value of Icpl, beyond which 
waves cannot be trapped by the current. 

If we use c p  as the eigenvalue, then (4.29) is extremely difficult to solve since q is 
a function not only of cp ,  but also of the turning longitude, xo. Instead, if we use k 
as the eignvalue for the given value of c p ,  it greatly simplifies the problem. Since cp  
is known, xo is determined and so is P, which is defined by 

P = J)-q(t)]idt. 

Now, the asymptotic dispersion relationship becomes 

(n = 0,1 ,2 ,  ...), 
(4n+l)n  

4P 
k =  

(4.30) 

(4.31) 

The above equation shows that for each given value of c p  we obtain an infinite 
number of eigenvalues k each of which corresponds to  a distinct zonal mode. Also, for 
a fixed phase speed, or equivalently, for a fixed turning longitude, the alongshore 
wavenumber of a trapped internal gravity wave increases linearly with its zonal 
mode number. Equations (4.30)-(4.31) indicate that the amplitude of P is related to 
xo; I%+ 03 if and only if xo+O (for any given n). Table 1 gives the eigenvalues of the 
ten lowest trapped zonal modes in a constant mean current. They were calculated 
both by the asymptotic method and by the numerical method that directly solves the 
linear eigenvalue system, (4.4)-(4.8). 
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In the limiting situation of xo approaching the eastern boundary x = 0, the 

c p + +  1+U,(O). (4.32) 

The sign of c p  should be opposite to that of vk(O-) due to the requirement q'(O-)  < 
0, which is a necessary condition for the existence of trapped waves when xo = 0. 

We call this group of trapped internal gravity waves, which have their turning 
longitude xo at the eastern boundary, the 'short Kelvin waves'. As shown in $4.4, the 
northward-propagating short Kelvin waves share the same dispersion curve as the 
classical Kelvin waves. These short Kelvin waves are nearly non-dispersive, and their 
Z-function also has an exponential offshore profile. The offshore decay ratio, 
however, is proportional to  the alongshore wavenumber, k ,  and the wave is not in 
geostrophic balance at  all. If the eastern boundary current varies a little within the 
internal Rossby radius of deformation, then the difference in phase speed between 
the Kelvin wave and the northward-propagating short Kelvin wave is about a 
quarter of the mean current speed (recall that the Doppler shifted phase speed of the 
Kelvin wave is 1 +$o for a constant mean current). If the mean current has a rapid 
zonal shear, then the phase speed of the short Kelvin wave is only affected by the 
velocity of the mean current at the eastern boundary. 

dispersion relation (4.31) should be replaced by 

4.3. Current-shear-induced double-turning longitudes 

We have discussed the case of the single turning longitude in the last section, where 
the internal gravity wave guide is formed by the coastline and the turning longitude 
caused by the mean current. Now, we consider the situation in which the short 
internal gravity waves are trapped in a boundary current by two turning longitudes, 
which are some distance away from the coastline. We know that if the mean current 
velocity is zero, the only coastal trapped wave in the present model is the Kelvin 
wave ; if the velocity of the geostrophic mean current does not vary in the offshort 
direction, then there can be, a t  most, one turning longitude. Therefore, if the 
geostrophic top-layer mean current induces more than one turning longitude for the 
internal gravity waves, it must have zonal shear. 

4.3.1. Eigenfunction solutions 

have non-trivial trapped modes, p(x) must have the following characteristics : 
We assume that x1 and x2 are two simple turning longitudes, and 0 > x1 > x2. To 

p(x) > 0, x > x1 or x < x2, 

q(x) = 0, T = x1 or x = x2. 

Let x* be a point between x1 and x2, i.e. x2 < x* < xl. Then, the solution for 2 in 
each of the two regions [x*, 01 and ( -  CO, x*] can be obtained by following the same 
procedure as for the single-turning-longitude case (Olver 1974) : 

q(x)  < 0, x2 < x < xl, 

Z, = [q(~)/L '~(x)]- '  [cl Ai (&,) + c ,  Bi (k&,)],  x* d x < 0, (4.33) 

where 
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and Z ,  = [ ~ ( x ) / ~ , ( x ) ] - ~ [ c , A i ( l c ~ ~ , ) + c , B i ( k ~ ~ , ) ] ,  - -OO < x < x*, (4.35) 

To avoid the  blowing up of Bi(&J at the coast for a large k ,  we have to make 
c2 = 0;  and because of the boundedness of Z a t  - 00, c4 also has to be zero. 

4.3 2. Eigenvalue calculation 
It remains to match the solutions of 2, and Z ,  a t  x*. 
The asymptotic expressions for Z ,  and Z,  at x* can be obtained according to the 

behaviour of Ai with large negative argument : 

Z, (x*) w c1 k-i[ - p(x* )I-$ sin {$k[ - el (x* )I: + an>, 
~ , ( x * )  x c3 k-~l-~(x*)l-~sin{$lc[-~,(x*)lt+~~lt), (4.38) 

(4.37) 

where (4.39) 

(4.40) 

A necessary condition for 2, and 2, to be matched at x = x* is that their 
Wronskian vanishes there (Jeffreys 1962 ; Olver 1974), i.e. 

(4.41) 

For large k ,  the first derivatives of 2, and Z, can be approximated as 

z;(x*) x -c ,  6[ -p(x*)]fcos{gk[ -C,(x*)]"+S?t>, (4.42) 

ZL(X*) x c3 k$[ -q(x*)]fcos{$k[ - g,(x*)];+aTC}. 

sin ($k[ - c,(x*)$+$~c[- c2(x*)f-$7cn> = 0, 

(4.43) 

(4.44) 

Ic = (2n+ 1)7c/2P (72 = 0 , 1 , 2 , .  . .), (4.45) 

Therefore, (4.41) leads to 

which implies the dispersion relation 

where P = l:[-q(t)]idt 

(Olver 1974). 
For high zonal modes, this dispersion relation is very close to that of the single 

(interior) turning longitude case. In  fact, in the latter, the eastern boundary is acting 
as the other turning longitude. It is also true in the case of double turning longitudes, 
as for the single turning longitude, that the alongshore wavenumber of a trapped 
internal gravity wave increases with the zonal mode number, provided that the 
phase speed is fixed, or equivalently, the turning longitudes are fixed. 

The boundary condition a t  x = 0, i.e. the normal velocity vanishes at the eastern 
boundary, is satisfied naturally to  the first approximation because the solution, 2, 
has an evanescent characteristic for a large positive argument, dc(0). 
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4.3.3. Wave guide location 

Owing to the zonal shear of the mean current, the internal gravity waves trapped 
in a wave guide formed by double turning longitudes behave differently from those 
which are trapped by a wave guide formed by the eastern boundary and a single 
interior turning longitude. In  the former, the so-called shadow zones, where the 
internal gravity waves cannot propagate in the zonal direction but their amplitude 
decays exponentially, are on both sides of the wave guide. In  the latter case, 
however, the shadow zone is only on the offshore side (western side) of the wave 
guide. The peak of a wave trapped in a double-turning-longitude wave guide is some 
distance away from the eastern boundary. It is desirable to know its location. Under 
the combined influences of current shear, interface slope, and the eastern boundary 
wall, these wave guides may occur in locations other than at the axes of the currents 
(Peregrine 1976) or the negative vorticity regions (Kunze 1985), as will be shown by 
the examples in 94.4. 

The distance between turning longitudes, x, and x2, is directly related to the phase 
speed, cp. Thus, we can obtain their limit position, x*, where x1 and x2 coincide, and 
the corresponding phase speed, c$, by applying the Lagrangian-h method for the 
variation of the function 

9 ( C P , X )  = c; (4.46) 
with two auxiliary conditions 

l-[c,-vo(x)]”/[l +h(x)] = 0, 
(1 - [ C , - W ~ ( X ) ] ~ / [ ~  +h(x)]}” > 0. 

(4.47) 

(4.48) 

The above problem can be modified as a variational problem about function @ by 
defining 

(4.49) 

where h is an undetermined factor. 
Now the values of x*, c$ and h of the free variation problem of @ can be found by 

(4.50) 2c; - 2h[c$ - vo(x*)]/[ I + h(x*)] = 0, 

w,(x*)] v&*) [c; - vo(x*)]2 ?lo(.*) 
[ 1 + h(x*)]2 

+ 
I + h(x*) 

(4.51) 

I - [c$ - vo(x*)]”[l + h(x*)] = 0, (4.52) 

(1 - [c,* - vo(x*)]2/[ 1 + h(x*)])” > 0, 

1 -4[1 +h(x*)] W;’(X*)/W:(X*) = 0, 
C; = vo(x*)-2[1 +h(x*)] W;(X*)/W,(X*), 

(4.53) 

(4.54) 
(4.55) 

(4.56) 

This does not include the situation where x* occurs on the eastern boundary; that 

the solutions of which are 

h = [1+ h(x*)] Ci/[Cp* - vo(x*)], 

together with condition (4.53) which is needed to identify false solutions. 

issue was dealt with in $4.2.2. 

4.4. Three examples 
The interior current structure far away from the outmost longitude has virtually no 
effect on the internal gravity waves trapped in a wave guide that is close the eastern 
boundary; therefore, we only have to make the mean current structure of the model 
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FIGURE 2 .  Zonal profiles of three examples of geostrophic mean currents and their corresponding 
upper-layer thickness displacements. Positive values of h(z )  mean that the layer is thicker than H,, 
so that h(z) contour is the mirror-image of the thermocline. (a)  A broad southward current with its 
strong part a t  the eastern boundary; (b )  a jet-like southward current; ( c )  a southward current with 
a countercurrent near the boundary. ----, h(x) ; -, v&). 

resemble that of a real-world current within a distance that is wide enough to 
encompass the wave guide. Unless otherwise stated, the eigenvalue system, 
(4.4)-(4.8), is solved numerically. The results are then compared with the asymptotic 
results of the earlier sections. 

The mean current ( a )  (figure 2a)  is a broad, southward current that is strongest 
near the eastern boundary. It resembles the offshore profile of the California Current 
off Cape Mendocino (Hickey 1979). 

Internal gravity waves trapped by this geostrophic mean current tend to have a 
single interior turning longitude if they are northward propagating (against the 
current) ; they have double interior turning longitudes if they are southward 
propagating (with the current). When the phase speed of the trapped internal gravity 
wave decreases, therefore, it is trapped by a narrower wave guide, the wave 
propagating against the mean current tends to be trapped close to the boundary, 
while the wave propagating with the mean current tends to be trapped toward x*, 
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FIGURE 3. Dispersion relations of the six lowest trapped zonal modes of the internal gravity waves 
propagating against (cp > 0), and following (cp < 0), the southward mean current shown in figure 
2 (4. 

Theoretical Numerical 
Mean 

current ( X * , C , * )  (x*, c;, (x*, c;, k*) (x*,c,*,k*) 
type c; > 0 c,* < 0 c; > 0 C,* < 0 

(a )  (0.000,0.894) (-1.222, -1.071) (0.000,0.894, ( -  1.225, - 1.071, 

(b )  ( -  1.074,0.919) (0.000, - 1.004) (- 1.061,0,930, (0.000, - 1.002, 

(c) ( -  1.037,0.899) (-0.370, -0.899) (-1.059,0.910, (-0.363, -0.910, 

583.243) 31 7.495) 

44.76 1 ) 139.271) 

44.190) 92.792) 

TABLE 2. Limit locations of the turning longitude, x*, and the corresponding phase speeds, c,*. 
Results are calculated both the formulae given in 54.3.3 and by the numerical eigenvalue solver, 
k* is the eigen-wavenumber obtained numerically. 

which is the location of the wave guide formed by double interior turning longitudes 
in the short-wave limit. Good agreement is found between the numerical results and 
those predicted by the theories in $4.3.3 (table 2). 

Figure 3 shows that when the wave phase speed increases, not only does the 
meridional (alongshore) wavenumber, k, of a given zonal mode becomes smaller but 

8-2 
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FIGURE 4. Offshore shape of a short Kelvin wave trapped by the mean current (a). k = 27 and 
cp = 0.912. ----, u ;  -, v;  ......, z. The curve z is so close to that of v that they can hardly 
be distinguished from each other in this figure. 

the increment of k among different modes also decreases. For a given value of cp, the 
increment of k is n/P (see (4.31) and (4.45)) each time the zonal mode number 
increases by 1.  With a broad, southward, geostrophic mean current as current (a), 
n/P decreases rapidly with increasing cp. Hence, the dispersion curves of different 
modes become focused at  the long-wave end of the spectrum. The smallest 
alongshore wavenumber of the internal gravity waves trapped by current (a) is about 
0.5, and the associated smallest increment of the wavenumber is about 0.3 between 
adjacent zonal modes. These values apply to both internal gravity waves with 
positive phase speed and to those with negative phase speed. This finding suggests 
that an energetic, internal gravity wave phenomenon, which is of wavelength 
comparable to the Rossby radius of deformation, or equivalently, of frequency 
comparable to the inertial frequency, may be formed simply because many more 
modes are trapped in the neighbourhood of this frequency than are trapped in the 
neighbourhoods of higher frequencies. 

It is indicated by figure 3 that the long Kelvin waves in the boundary current are 
non-dispersive, which is consistent with the result of $3. Since the mean current ( a )  
has negative vorticity a t  the coastline, northward-propagating short Kelvin waves 
are found. They are the continuation of the long Kelvin waves on the dispersion 
curve n = 0, cp > 0. Their phase speed limit is 1 + w(O), as stated by (4.32). Figure 4 
displays the offshore shape of one of these short Kelvin waves. Its offshore decay 
ratio is much larger than that of classical Kelvin waves. 

The eigenfunctions in figures 5 and 6 show that trapped internal gravity waves 
with the same phase speed have the same turning longitude. This is because cp is the 
sole parameter which determines the zeros of q(x). 

In  the present case, the eastern boundary acts as one of the turning longitudes for 
the northward-propagating, trapped internal gravity waves, both short and long 
(figure 5). However, the eastern boundary is not essential for trapping the southward- 
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propagating waves (figure 6). Figure 7 tells us why this is so: the northward- 
propagating waves here can only have single interior turning longitudes, but the 
southward-propagating waves can have both single and double interior turning 
longitudes. The northward-propagating internal gravity waves here are trapped in a 
way similar to edge waves whose refraction is caused by offshore deepening in the 
absence of mean currents ; in the case of double interior turning longitudes, however, 
the internal gravity wave energy is refracted away from the coast, against which the 
mean current is flowing. 

The basic offshore features of the mean current ( b )  (figure 2 b )  resemble those of the 
California Current off Oregon, which was measured during the CUE1 experiment 
(Hickey 1979). Compared with current (a) ,  the new features introduced in this jet- 
like mean current (b )  are that it has a positive vorticity zone on its eastern wing and 
that it is much narrower. 

Because of a narrower boundary current, the turning longitudes of the internal 
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FIGURE 6. Offshore shapes of the three lowest zonal modes with cD = - 1.08. They are trapped by 
the mean current (a)  and have double turning longitudes. (a)  The n = 0 zonal mode with 
k = 12.404; (b )  the n = 1 zonal mode with k = 25.802; (c) the n = 2 zonal mode with 
k = 40.691. ----, U ;  -, V ;  . . . . . .  > 2. 

gravity waves trapped by current ( b )  cannot go as far into the ocean’s interior as 
those of the internal gravity waves trapped by current (a). A shorter distance 
between the turning longitudes (one of them may be the coastline) means a smaller 
phase speed of the internal gravity wave trapped in between them, which, in turn, 
means a larger longshore wavenumber (see (4.31) and (4.45)). Therefore, the 
maximum alongshore wavelength of the internal gravity waves (other than the 
Kelvin wave) trapped by current ( b )  is smaller than that of those trapped by current 

Figure 8 shows the interface displacements of two groups of fundamental modes 
in the offshore direction; one group propagates against the mean current (cp > 0 ) ,  the 
other with the mean current (cp < 0). The ways that these modes are trapped by 
current (b) ,  in terms of the number of interior turning longitudes, are opposite to 
those by current (a). Modes which propagate against current (b )  tend to be trapped 
by double interior turning longitudes, while modes which propagate with current (b )  
tend to be trapped by a single interior turning longitudes. Since the axis of the jet 

(a). 
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FIGURE 7. (a) cD( > 0) isolines in the (z, q)-plane for the mean current type (a). The lightly shaded 
region covers cp values which allow trapped gravity waves with a single turning longitude; cI, valucs 
in the unshaded region are too small for gravity wave8 to  be trapped by the mean current. Isoline 
interval = 0.05. (b)  Same as (a)  but for cp < 0. The darkly shaded region covers cp values which 
allow trapped gravity waves with double turning longitudes. lsoline interval = 0.01 17. 
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FIGURE 8. Interface displacement of eight fundamental zonal modes (four for cp > 0 and four for 
cp < 0), which are trapped by the mean current (b) .  ( a )  -, c, = 0.94, k = 22.698; __. . .-, 
cP = 0.96, k = 10.975; ---- , cp = 0.98, k = 4.553; ---.--, cp = 1.0, k = 1 . 4 4 5 ~  ......, the 

mean current profile (with its actual magnitude multiplied by 10 (same in b)). ( b )  -, cp = - 1.01, 
k = 27.86; -. * .~ , ~ , = - 1 . 0 2 ,  k = 16.01; ----, C, = -1.03, k = 11.74; -.-, 
C, = - 1.04, k = 9.531. 

is relatively far from the coastline, the internal Kelvin wave is hardly modified by 
the mean current (figure 8a).  

Without boundaries and interface slope, a jet-like current cannot trap waves 
which propagate in the same direction (Peregrine 1976). Having included the 
boundary effect, current shear, and the interface (thermocline) slope, we find that 
this restriction is no longer true. The seaward deepening of the interface related to  
a southward geostrophic boundary current, small as it may be, can block southward- 
propagating internal gravity waves of certain parameter (c,) range from transmitting 
into the western interior; they can be reflected back and forth between turning 
longitudes (one of them may be the eastern boundary) while they propagate with the 
mean current (figure 86). Furthermore, the sign of the mean current vorticity is not 
a decisive factor in locating wave guides, as it was for the near-inertial waves in 
Kunze’s (1985) study. Wave guides in the present study were formed in negative 
vorticity regions as well as in positive vorticity regions. 

Figure 8 also indicates that as the phase speed becomes smaller, the northward- 
propagating waves are trapped closer to the limit position of the interior turning 
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longitude, x*, which is coincident with the axis of current ( 6 ) ;  meanwhile, the 
southward-propagating waves are trapped closer to the eastern boundary, The 
positive vorticity of mean current ( b )  a t  the coastline permits the southward- 
propagating short Kelvin waves, which are not allowed in current (a). They have the 
limiting phase speed of - 1 +v,(O). 

The mean current in figure 2 c  has a countercurrent next to the boundary. I n  this 
case, the conditions q(0) = 0 and q'(0) < 0 cannot be satisfied simultaneously. As a 
result, the short Kelvin waves are not formed. Here, the internal gravity waves tend 
to be trapped by double turning longitudes, which have interior limit positions, x* 
(table 2). Figure 9 shows that short internal gravity waves are trapped around one 
of the current axes, against which the waves are propagating. 

The strong shear of the mean current ( c )  in the narrow northward-flowing region 
helps to trap southward-propagating internal gravity waves. Generally, however, if 
the northward geostrophic mean current is broad, the related interface slope, which 
shoals seaward, has the potential of leaking southward-propagating internal gravity 
waves into the western interior. 
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5. Conclusions and discussion 
Using a reduced-gravity model, we found that geostrophic boundary currents not 

only modify the internal Kelvin wave, but also create wave guides which trap high- 
frequency, short internal gravity waves. These trapped internal gravity waves have 
phase speed close to that of the internal Kelvin wave, but the direction of their 
alongshore propagation can be the same as, or opposite to, that  of the internal Kelvin 
wave. Their alongshore wavenumber increases with their offshore mode number, 
provided that the waves are trapped by the same wave guide. 

The trapping mechanism of the internal gravity waves results from the combined 
effects of the current shear, the interface slope and t h e  eastern boundary. However, 
wave guides that are much narrower than the Rossby radius of deformation are 
formed mainly because of the current shear, usually when the current is narrow or 
has a strong shear region. If the geostrophic mean current is wide, the associated 
interface slope plays an important role in forming wide wave guides. Since the 
maximum alongshore wavelength of the trapped internal gravity waves increases 
with the width of the wave guide, we expect that the spatial scale, and therefore the 
timescale, of the trapped internal gravity wave phenomenon caused by a wide 
geostrophic current will be larger than that due to  a narrow current. 

Tf there is no limit on the width of the geostrophic mean current, is it possible that 
the maximum alongshore wavelength of the trapped internal gravity wave can be 
indefinitely long ? The answer is no. When the wavelength becomes longer, the role 
of the Coriolis force becomes more and more important, and the wave equations 
(4.9)-(4.11) become less and less accurate. Eventually, the primary balance switches 
to that between the pressure-gradient force and the Coriolis force. Then, the only 
trapped internal gravity wave left is the Kelvin wave. The alongshore wavenumbers 
of the longest waves (other than the Kelvin wave), which were found numerically in 
the examples of $4.4, are around 0.5. Thus, the Rossby radius of deformation and the 
inertial period are about the largest spatial and time scales that these trapped 
internal gravity waves can have. Interestingly, a t  this low-frequency end of the 
spectrum, the dispersion curves of different zonal modes become strongly focused, as 
shown in figure 3 with the example current (a) .  This suggests that an energetic 
internal gravity wave phenomenon with near-inertial frequency may be found in a 
broad geistrophic boundary current. 

There are three constraints which lead to the trapped internal gravity waves 
having a small discrepancy in phase speed, assuming that they propagate in the same 
direction. Firstly, the boundary mean currents used in the present study are weak 
( I v , , ~  1 )  and have finite width. Therefore, the minimum value of Icp( of the internal 
gravity waves cannot be much less than the Kelvin wave speed in order for them to 
be trapped by the boundary current. If the phase speed is too small, turning 
longitudes cannot be created (see figure 7). For the prescribed mean current (a), the 
lower limit for cp > 0 and upper limit for cp < 0 as functions of k are guided by the 
two n = 0 dispersion curves in figure 3. 

Secondly, there is a limitation on the maximum alongshore wavelength of the 
trapped internal gravity waves other than the Kelvin wave. This maximum 
wavelength is either comparable t o  the Rossby radius of deformation, or a function 
of the given boundary current, depending on which one is smaller. This, in turn, puts 
a restriction on the maximum value of Icpl, since the maximum wave phase speed is 
associated with the maximum alongshore wavelength. Thus, if the width of mean 
current (a) is finite instead of being infinite, the offshore slope of the interface 
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vanishes beyond the longitudes where the mean current exists, then the magnitude 
of phase speed of trapped internal gravity waves has to be bounded, for turning 
longitudes can be created only within the width of the mean current. Therefore, the 
lower left corners of figure 7 (a, b ) ,  where large cp isolines are, should be unshaded if 
the mean current (a )  has a finite width. 

Thirdly, the outermost turning longitude should be within a reasonable distance 
from the coastline for the trapped internal gravity waves to be considered as a 
coastal phenomenon. For a broad current, this means that Icp( should not greatly 
exceed 1.  In fact, if we assume x, to be the outermost turning longitude, and v0 to 
be the average velocity of the boundary current wo(x) within [x,,O), then 

cp = k(1 +GO~, )"+ , (xO) .  (5.57) 

According to this estimation, IcpJ is only about 1.14 if x, = -30 and Do = -0.01. 
Therefore, for realistic basin size and parameters which describe the mean boundary 
current, the range of cp is confined within two narrow regions near cp = 1 and 
cp = - 1,  rather than being limitless. 

In  order for the shallow-water equation to be valid, k (non-dimensional) should be 
smaller than g't/(2fHi).  Therefore, k is allowed to have larger values in lower 
latitudes, where L, is larger, than in higher latitudes, assuming that H ,  and g' are 
unchanged. Given g' = 0.04 m s - ~  and H ,  = 40 m, km,, is around 200 for a mid- 
latitude ocean. So, the large Ic values in figure 3 would require a shallower or stronger 
thermocline, or a lower latitude ocean. 
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Appendix. Derivation of the Green's function for 2, 

obtain 
If (3 .24)  is multiplied by G and then integrated from minus infinity to zero, we 

[ Z X )  - Z,(tJl G(X> 5) d5 = Im $(El G(x,  6) d5. L (A 1 )  

Applying the partial integration rule to the left-hand side of (A 1) yields 

z ; ( O ) Q ( x , O ) - z ~ ( - ~ )  G(x,  -m)-[z2(0) Gg(x,O)-Z,(-a) GE(x, -a)] 
0 

Z,(O IG&, 5) - G(z, 8 1  d5- (A 2 )  +L 
Imposing the boundary conditions of 2, and requiring that G&x, - m) = 0 yields 

J --co J -a 
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Now the Green’s function G(x ,  5) is determined by 

G,,-Q = 6(x - [ )+F,  

G(x ,  0) - G&x, 0) = 0, 

G,(z, - C O )  = 0, 

where F = --ex+,. The reason for the existence of F is to make the right-hand side 
of ( A 4 )  orthogonal to the function ec, which is a complementary solution 
(Greenberg 1971). 

From (A 4) we derive 

A e ~ + B e - ~ - ~ e e Z + ~ ,  x < c <  0 
G(x ,5 )  = (n , (A 7)  

e + E e - , - ~ e x + ~ ,  -a < C < x  

where A ,  B, C and D are constants to  be determined. 

Furthermore, the continuity condition of G a t  5 = x leads to 
In order to satisfy the vanishing boundary condition ( A 6 ) ,  E must be zero. 

AeZ+Be-% =De5.  (A 8) 

Equations (A 5) and (A 7)  yield 

By integrating (A 4) with 5 once in the interval [x-0 ,  x+O] we obtain 

B = -w. 

Q, 15-0 eZ+o-[~~Gd<= l +  

Taking into consideration the continuity requirement of functions G and F a t  
5 = x ,  the above equation gives 

G, 1::; = 1. (A 11) 

AeX-Be-”-Dex = 1. (A 12) 

Substituting the expression for G(x,  5) given in (A 7) into (A 11) gives 

Equations (A 8), (A 9) and (A 12) yield 

where D ( x )  is an arbitrary function of x because e, is a complementary solution 
From (A 3)-(A 6) we obtain 

where K ,  = 2 !yrn Z,(<) eldk is an arbitrary constant. 
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